Ir al contenido principal

FORMAS DE LA ECUACIÓN

La Línea Recta

Definamos teóricamente a una recta como una sucesión infinita de puntos y que además tiene una única inclinación o pendiente.

Entonces, para identificar claramente a una recta y asegurar que es única en cuanto a su expresión matemática o fórmula, se deben tener en conocimiento necesariamente dos datos:

             - Dos puntos de la recta ó

             - Un punto de la recta y su pendiente ó
             - Un punto de la recta y su inclinación.
ECUACIÓN DE LA RECTA CONOCIDOS DOS DE SUS PUNTOS:
Teniendo 2 puntos conocidos en el plano que pasen por la recta buscada, se puede afirmar que solamente una recta pasará por esos 2 puntos, es decir, la recta que pase por esos 2 puntos será única y no existirá otra recta diferente con esas características.
Si tomamos tres puntos pertenecientes a una recta, dos de ellos conocidos A(x1, y1) y B(x2, y2), y un punto (x, y) cualquiera desconocido, se puede encontrar la ecuación cartesiana de la recta conocidos dos puntos donde el primer punto será A(x1, y1) y el segundo punto será B(x2, y2) con la siguiente expresión:



ECUACIÓN DE LA RECTA CONOCIDOS UN PUNTO Y SU PENDIENTE:
Otra forma para afirmar y confirmar que sólo una recta pasará por un punto conocido es conocer también su pendiente, es decir, si conocemos un punto cualquiera de la recta y también su pendiente, podemos afirmar que sólo una recta tendrá esa pendiente y pasará por ese punto:


ORDENADA EN EL ORÍGEN – PENDIENTE:
Cuando se conocen la pendiente de la recta y la intersección de la misma con el eje y:

donde m es la pendiente y b es la intersección con el eje y


ECUACIÓN GENERAL DE LA RECTA

La ecuación general de la recta puede adoptar la forma general:

Ax + By + C = 0

Donde los coeficientes A y B nos ayudan a determinar la pendiente de la recta y, está dada por la siguiente expresión:

Pendiente m = - A/B

También podemos aprovechar los coeficientes B y C que nos ayudan a determinar el punto de intersección de la recta con el eje de las ordenadas (y).


Comentarios

Entradas más populares de este blog

DIVISIÓN DE UN SEGMENTO ENTRE UNA RAZÓN DADA

La razón es el cociente, una comparación entre dos tramos de un segmento.  En el siguiente ejemplo, se muestra que en el segmento AB, P, es un punto ubicado dentro de la recta. Para obtener la razón de esta recta, primer debemos comprender que es distinto si tomamos la razón de ARRIBA a ABAJO, que al revés.    El sentido de donde tomemos la razón es importante, generalmente, tomamos el punto más abajo al que se encuentra en la parte de arriba. El sentido importa. La razón es una comparación entre dos extremos de una recta, entonces, la fórmula para obtener una razón, (que a partir de ahora representaremos con la letra r), será r= AP/PB.  La fórmula para calcular valor en "x" y valor en "y" del punto P es la siguiente. Donde r será la razón  Ejercicio:  a) En un segmento AB, donde A tiene coordenadas (6,-3) y B(1,6). Hallar coordenadas de del punto P, si la razón es de 4. ​ RESOLUCIÓN: ​Tenemos q...

PENDIENTE

PENDIENTE DE UNA RECTA La pendiente de una recta en un sistema de representación rectangular (de un plano cartesiano ), suele ser representado por la letra  , y es definido como el cambio o una diferencia en el eje Y dividido por el respectivo cambio en el eje X, entre 2 puntos de la recta. En la siguiente ecuación se describe: toda recta que no sea horizontal, tiene que cortar al eje "x". Se dice que si una recta corta al eje X, la inclinación de la recta se define como el ángulo positivo menor de 180° La formula para calcular la pendiente es  Dada una recta, gráficamente su pendiente nos da su grado de inclinación Pendiente positiva   Cuando la recta es creciente (al aumentar los valor es de x aumentan los de y), su pendiente es positiva, en la expresión analítica m > 0 Pendiente negativa Cuando la recta es decreciente (al aumentar los valores de x disminuyen los de y), su pendiente es negativa, en la expresión an...

DISTANCIA ENTRE 2 PUNTOS

El Plano cartesiano   se usa como un sistema de referencia para localizar puntos en un plano. Otra de las  utilidades de dominar los conceptos sobre el Plano cartesiano radica en que, a partir de la ubicación de las coordenadas de dos puntos es posible calcular la distancia entre ellos. Cuando los puntos se encuentran ubicados sobre el eje  x  (de las abscisas) o en una recta paralela a este eje, la distancia entre los puntos corresponde al valor absoluto de la diferencia de sus abscisas  (x  2  – x  1  )  . Ejemplo: La distancia entre los puntos (–4, 0) y (5, 0) es 5 – (–4) = 5 +4 = 9 unidades. Cuando los puntos se encuentran ubicados sobre el eje  y  (de las ordenadas) o en una recta paralela a este eje, la distancia entre los puntos corresponde al valor absoluto de la diferencia de sus ordenadas. Ahora, si los puntos se encuentran en cualquier lugar del sistema de coordenadas, la distancia queda ...