Ir al contenido principal

ANGULO ENTRE 2 RECTAS


Cuando dos rectas se cruzan, se forman ángulos a partir de ésta intersección. Dichos ángulos son conocidos como ángulos de intersección. ​Para calcular dicho ángulo, se utiliza la siguiente ecuación:


 Donde m1 y m2 son las pendientes de las rectas.

Ésta formula se puede demostrar de la siguiente manera:
Dadas dos rectas que se intersectan en un punto, los ángulos que se forman cuando éstas tocan el eje x serían
 γ (gamma) y β (beta).


Ángulos que se forman cuando las rectas cruzan el eje X.
 Por lo tanto:


Ejemplo:
 Determina la medida de los ángulos del triángulo A(1,8), B(-1,4) y C(2,-1).



​Primero, se obtiene las pendientes de los tres lados del triángulo: 

Pendientes de cada uno de los lados del triángulo.


Después, se obtienen los ángulos de cada uno de los vértices, tomando como mla pendiente del lado adyacente al que estás, y mla pendiente del lado actual. Al final, los tres ángulos deberán sumar 180° por ser ángulos internos de un triángulo

Cálculo de los tres ángulos. La suma de los tres da como resultado 180°.


Comentarios

Entradas más populares de este blog

DIVISIÓN DE UN SEGMENTO ENTRE UNA RAZÓN DADA

La razón es el cociente, una comparación entre dos tramos de un segmento.  En el siguiente ejemplo, se muestra que en el segmento AB, P, es un punto ubicado dentro de la recta. Para obtener la razón de esta recta, primer debemos comprender que es distinto si tomamos la razón de ARRIBA a ABAJO, que al revés.    El sentido de donde tomemos la razón es importante, generalmente, tomamos el punto más abajo al que se encuentra en la parte de arriba. El sentido importa. La razón es una comparación entre dos extremos de una recta, entonces, la fórmula para obtener una razón, (que a partir de ahora representaremos con la letra r), será r= AP/PB.  La fórmula para calcular valor en "x" y valor en "y" del punto P es la siguiente. Donde r será la razón  Ejercicio:  a) En un segmento AB, donde A tiene coordenadas (6,-3) y B(1,6). Hallar coordenadas de del punto P, si la razón es de 4. ​ RESOLUCIÓN: ​Tenemos q...

PENDIENTE

PENDIENTE DE UNA RECTA La pendiente de una recta en un sistema de representación rectangular (de un plano cartesiano ), suele ser representado por la letra  , y es definido como el cambio o una diferencia en el eje Y dividido por el respectivo cambio en el eje X, entre 2 puntos de la recta. En la siguiente ecuación se describe: toda recta que no sea horizontal, tiene que cortar al eje "x". Se dice que si una recta corta al eje X, la inclinación de la recta se define como el ángulo positivo menor de 180° La formula para calcular la pendiente es  Dada una recta, gráficamente su pendiente nos da su grado de inclinación Pendiente positiva   Cuando la recta es creciente (al aumentar los valor es de x aumentan los de y), su pendiente es positiva, en la expresión analítica m > 0 Pendiente negativa Cuando la recta es decreciente (al aumentar los valores de x disminuyen los de y), su pendiente es negativa, en la expresión an...

DISTANCIA ENTRE 2 PUNTOS

El Plano cartesiano   se usa como un sistema de referencia para localizar puntos en un plano. Otra de las  utilidades de dominar los conceptos sobre el Plano cartesiano radica en que, a partir de la ubicación de las coordenadas de dos puntos es posible calcular la distancia entre ellos. Cuando los puntos se encuentran ubicados sobre el eje  x  (de las abscisas) o en una recta paralela a este eje, la distancia entre los puntos corresponde al valor absoluto de la diferencia de sus abscisas  (x  2  – x  1  )  . Ejemplo: La distancia entre los puntos (–4, 0) y (5, 0) es 5 – (–4) = 5 +4 = 9 unidades. Cuando los puntos se encuentran ubicados sobre el eje  y  (de las ordenadas) o en una recta paralela a este eje, la distancia entre los puntos corresponde al valor absoluto de la diferencia de sus ordenadas. Ahora, si los puntos se encuentran en cualquier lugar del sistema de coordenadas, la distancia queda ...